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Abstract

Background: Summary data furnishing a two-sample Mendelian randomization (MR)

study are often visualized with the aid of a scatter plot, in which single-nucleotide polymor-

phism (SNP)–outcome associations are plotted against the SNP–exposure associations to

provide an immediate picture of the causal-effect estimate for each individual variant. It is

also convenient to overlay the standard inverse-variance weighted (IVW) estimate of

causal effect as a fitted slope, to see whether an individual SNP provides evidence that

supports, or conflicts with, the overall consensus. Unfortunately, the traditional scatter plot

is not the most appropriate means to achieve this aim whenever SNP–outcome associa-

tions are estimated with varying degrees of precision and this is reflected in the analysis.

Methods: We propose instead to use a small modification of the scatter plot—the

Galbraith Radial plot—for the presentation of data and results from an MR study, which

enjoys many advantages over the original method. On a practical level, it removes the

need to recode the genetic data and enables a more straightforward detection of outliers

and influential data points. Its use extends beyond the purely aesthetic, however, to sug-

gest a more general modelling framework to operate within when conducting an MR

study, including a new form of MR-Egger regression.

Results: We illustrate the methods using data from a two-sample MR study to probe

the causal effect of systolic blood pressure on coronary heart disease risk, allowing for

the possible effects of pleiotropy. The Radial plot is shown to aid the detection of a single

outlying variant that is responsible for large differences between IVW and MR-Egger re-

gression estimates. Several additional plots are also proposed for informative data

visualization.
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Conclusions: The Radial plot should be considered in place of the scatter plot for visualiz-

ing, analysing and interpreting data from a two-sample summary data MR study.

Software is provided to help facilitate its use.

Key words: Two sample summary data Mendelian randomization, Scatter plot, Heterogeneity statistics, Radial plot,

Radial MR-Egger

Background

Mendelian randomization (MR)1 is a methodological

framework for probing questions of causality in observa-

tional epidemiology using genetic data—typically in the

form of single-nucleotide polymorphisms (SNPs)—to infer

whether a modifiable risk factor truly influences a health

outcome. A particular MR study design gaining in popu-

larity combines publically available data on SNP–exposure

and SNP–outcome associations from separate but homoge-

neous cohort studies of unrelated individuals for large

numbers of uncorrelated SNPs. Each SNP is used to esti-

mate the causal effect under the primary assumption that it

is a valid instrumental variable (IV), by dividing its SNP–

outcome association by its SNP–exposure association to

yield the ratio estimate. Secondary modelling assumptions

are also required in order for this estimate to be consistent.

Ratio estimates are then combined into an overall estimate

of causal effect using an inverse-variance weighted (IVW)

fixed-effect meta-analysis. This is referred to as the IVW

estimate and the general framework as two-sample sum-

mary data MR.2,3 For further details, see Box 1.

Different formulae for the inverse-variance weights can

be employed, the most popular being simple ‘first-order’

weights, which assume the uncertainty in the SNP–expo-

sure association estimates is negligible. Although more so-

phisticated weighting approaches have recently been

proposed,4 for simplicity, we will use first-order weights

throughout this paper.

The scatter plot

Figure 1 shows a traditional scatter plot of summary data

estimates for the associations of 26 genetic variants with

systolic blood pressure (SBP, the exposure) and coronary

heart disease (CHD, the outcome). SNP–SBP association

estimates were obtained from the International

Consortium for Blood Pressure consortium (ICBP).5 SNP–

CHD association odds ratios were collected from

Coronary ARtery Disease Genome-Wide Replication And

Meta-Analysis (CARDIoGRAM) consortium6 and then

transformed to the log-scale for subsequent model fitting.

These data have previously been analysed and interpreted

by Lawlor et al.7 and Bowden et al.4 They are included

here for the purposes of illustration, rather than to draw

any novel epidemiological conclusions.

The ratio estimate for any individual variant is the slope

joining its data point to the origin, as shown for a single

variant in Figure 1 (left). The IVW estimate for these data,

which represents the causal effect of a 1-mmHg increase in

SBP on the log-odds ratio of CHD, is 0.053. This is shown

as the slope of a solid black line passing through the origin.

The data point contributed by SNP rs17249754 is

highlighted by a square symbol, as it will be subsequently

discussed. It has become conventional to fix the sign of the

SNP–exposure association estimates in these plots to be

uniformly positive. This would naturally be achieved if

each SNP had been coded to reflect the number of expo-

sure-increasing alleles. SNP–outcome association estimates

Key Messages

• Summary data furnishing a two-sample Mendelian randomization (MR) study are often visualized with the aid of a

scatter plot. The scatter plot is also used to interpret the validity of the standard inverse-variance weighted (IVW) esti-

mate and pleiotropy robust methods such as MR-Egger regression.

• A close relation of the scatter plot—the Radial plot—can instead be used for this purpose.

• The Radial plot removes the need to pre-process the summary data (a pre-requisite for MR-Egger), improves the de-

tection of outliers and influential data points in either an IVW or MR-Egger analysis, and can incorporate any set of

weights desired by the user.

• A more general form of MR-Egger regression is proposed that flows from, and naturally compliments, the Radial plot.

• Radial funnel and leave-one-out analysis plots can also be used to aid the visualization and interpretation of MR studies.

International Journal of Epidemiology, 2018, Vol. 47, No. 4 1265



Box 1: Standard two-sample summary data MR analysis

The IV assumptions: The canonical approach to MR assumes that the group of SNPs are valid IVs for the purposes of

inferring the causal effect of an exposure, X, on an outcome, Y. That is, they are: associated with X (IV1); not associated

with any confounders of X and Y (IV2); and can only be associated with Y through X (IV3). The IV assumptions are rep-

resented by the solid lines in the causal diagram below for a SNP Gj, with unobserved confounding represented by U.

Dotted lines represent dependencies between G and U, and G and Y that are prohibited by the IV assumptions. The

causal effect of a unit increase in X on the outcome Y, denoted by b, is the quantity we are aiming to estimate.

The ratio estimate: Assume that exposure X causally affects outcome Y linearly across all values of X, so that a hypo-

thetical intervention that induced a 1-unit increase in X would induce a b increase in Y. Suppose also that all L SNPs

predict the exposure via an additive linear model with no interactions. If SNP j is a valid IV, and the two study samples

are homogeneous, then the underlying SNP–outcome association from sample 1, Cj, should be a scalar multiple of the

underlying SNP–exposure association estimate from sample 2, cj, the scalar multiple being the causal effect b. That is:

Cj ¼ bcj:

The ratio estimate for the causal effect of X on Y using SNP j (out of L), bbj ¼ bC j=bc j , where bC j is the estimate for SNP j’s

association with the outcome (with standard error rYj) and bc j is the estimate for SNP j’s association with the exposure

(with standard error rXj).

The IVW estimate: The overall IVW estimate for the causal effect obtained across L uncorrelated SNPs is then given by

bbIVW ¼

PL
j¼1

wj
bbj

PL
j¼1

wj

;

where wj is the inverse-variance of bbj . Two popular choices for the inverse-variance weights are

1st order ðfixed effectÞweights : wj ¼
bc2

j

r2
Yj

2nd order ðfixed effectÞweights : wj ¼
r2

Yjbc2
j

þ
bC2

j r
2
Xjbc4

j

0@ 1A�1

:

When SNP–exposure association estimates are sufficiently precise, so that r2
Xj is negligible, or the causal effect b is

small, then both weighting schemes are very similar. When this is not the case, both first- and second-order weights

can perform poorly in terms of causal estimation and heterogeneity detection (see Box 2). ‘Iterative’ and ‘exact’ weight-

ing has recently been proposed by Bowden et al.4 to address this issue. For simplicity, first-order weights will be used

throughout this paper. In our example, the IVW estimate obtained using first-order weights is 0.053. This represents the

causal effect of a 1-mmHg increase in SBP on the log-odds ratio of CHD (see Table 1).
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must also be checked and altered to account for this change

(see Box 2 for further details). This does not alter the result

of the IVW analysis, but makes it easier to interpret the

IVW estimate as a best-fitting line through the data points.

Detecting and adjusting for heterogeneity in two-

sample MR

Within the meta-analytical framework underpinning the

standard IVW estimate, heterogeneity observed amongst

the ratio estimates can be assessed via Cochran’s Q statis-

tic. If the necessary modelling assumptions hold for two-

sample summary data MR and all SNPs are valid IVs, then

Cochran’s Q should follow, asymptotically, a Chi-squared

distribution, with degrees of freedom (df) equal to the

number of SNPs minus 1. Excessive heterogeneity there-

fore points to a meaningful violation of at least one of

these assumptions. Much attention has focused on detect-

ing and adjusting for one specific source of violation re-

ferred to as horizontal pleiotropy.8,9 This occurs when

SNPs exert a direct effect on the outcome through path-

ways other than the exposure. For brevity, we will refer to

horizontal pleiotropy simply as ‘pleiotropy’ from now on.

Del Greco et al.10 first proposed the use of Cochran’s Q

to detect pleiotropy in a MR context. However, the

presence of heterogeneity due to pleiotropy does not

automatically invalidate the IVW estimate. For example,

if, across all variants:

i. its magnitude is independent of instrument strength

(the so-called ‘InSIDE’ assumption11);

ii. it has a zero mean (i.e. it is ‘balanced’);

then a random-effects meta-analysis can be used in lieu of

the standard fixed-effects IVW meta-analysis to reliably es-

timate the causal effect accounting for the additional un-

certainty due to pleiotropy. If (i) holds but not (ii), then

MR-Egger regression can instead be used to reliably esti-

mate the mean directional pleiotropic effect and causal

effect.3,11 For the blood-pressure data in Figure 1, and as-

suming pleiotropy as the source of heterogeneity, MR-

Egger regression estimates the mean pleiotropic effect (i.e.

the intercept) to be 0.033 and the causal effect adjusted for

pleiotropy (i.e. the slope) to be virtually zero. Thus, MR-

Egger infers that the effect detected by the IVW approach

is spurious and due to bias rather than any underlying

causal mechanism.

An extended version of Cochran’s Q statistic (Rücker’s

Q03,12) can be used to assess heterogeneity about the MR-

Egger fit. See Box 2 for further details. The size of Q and Q0

in relation to one another (specifically the difference

Q�Q0) gives an indication as to the relative goodness of fit

of the IVW and MR-Egger models. For this reason, Bowden

Figure 1. Traditional scatter plot of SNP–CHD associations bC j vs SNP–SBP associations bc j . SNP rs17249754 is shown as a square symbol.
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Box 2 Detecting and accounting for heterogeneity in two-sample summary data MR

Heterogeneity amongst the ratio estimates can be calculated via Cochran’s Q statistic. When first-order weights are

used for the wj, Q can be expressed in two ways:

Q ¼
XL

j¼1

Qj ¼
XL

j¼1

1

r2
Yj

ðbCj � bbIVWbcjÞ2 ¼
XL

j¼1

wjðbbj � bbIVWÞ2;

If heterogeneity is detected (Q much larger than L-1), this suggests violation of the modelling or IV assumptions. In our

example, Q¼ 67 and L¼ 26, indicating substantial heterogeneity. Although horizontal pleiotropy is just one factor

among many others that could be the underlying source of heterogeneity, we will assume it is the cause when explain-

ing the implementation and assumptions of subsequent methods.

Accounting for pleiotropy via a random-effects meta-analysis: Let aj equal the pleiotropic effect of SNP j on the out-

come Y not through X, with sample mean and variance across all L SNPs of la and r2
a, respectively. If aj is independent

in magnitude of the instrument strength across all SNPs (the InSIDE assumption) and la¼ 0 (balanced pleiotropy), then

an additive24 or multiplicative25 random-effects meta-analysis can be used to reliably estimate the causal effect and in-

crease its standard error to reflect the additional uncertainty. In our analysis (Table 1), we take the multiplicative ap-

proach. This does not alter the IVW point estimate, but does increase its standard error by a factor of
ffiffiffiffiffiffiffi
Q

L�1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
67=25

p
�

1.64 relative to a fixed-effect model.

Accounting for pleiotropy via MR-Egger regression: If la is non-zero (directional pleiotropy), then the IVW estimate will

generally yield a biased estimate for the causal effect. However, if the InSIDE assumption holds, then MR-Egger

regression11 can still deliver reliable estimates for the causal effect, along with an estimate for la. It is implemented by

fitting the following linear regression of the SNP–outcome associations vs the SNP–exposure associations:

bCj ¼ b0E þ b1Ebcj þ rYj�j; where �j � Nð0;1Þ

after preprocessing the data according to the following rule:

For all j in ð1; ::;LÞ such that bcj < 0 : bcj ! �bcj; bCj ! �bCj:

The standard implementation of MR-Egger regression tacitly assumes first-order weights. In this case, the InSIDE as-

sumption is that the pleiotropic effects weighted by rYj are independent of the SNP–exposure associations weighted by

rYj. In our example, the MR-Egger interval and slope estimates are 0.033 and –0.002, respectively (see Figure 1 and

Table 1).

Assessing heterogeneity about the MR-Egger fit: Heterogeneity about the MR-Egger fit can be assessed using Rücker’s

Q
0

statistic.3,12 When first-order weights are used for the wj, Q
0

can be expressed in two ways:

Q
0 ¼

XL

j¼1

1

r2
Yj

fbCj � ðbb0E þ bb1EcjÞg2 ¼
XL

j¼1

wjðbbj �
bb0E

cj

� bb1EÞ2;

Specifically, Q
0

tests for the presence of heterogeneity due to pleiotropy around the MR-Egger fit after adjustment for

its mean value, la (estimated by bb0E ). This is equivalent to testing whether r2
a is greater than 0 (i.e. if the pleiotropic

effects are not all identical). When such heterogeneity is detected, standard errors for the MR-Egger intercept and slope

parameter estimates, bb0E and bb1E , can be inflated by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ br2

a

q
. This is consistent with applying a multiplica-

tive random-effects model using first-order weights. In our example, Q
0 ¼58.6, indicating substantial heterogeneity (but

less than for the IVW analysis). Standard errors are therefore inflated under a multiplicative model by a factor of
ffiffiffiffiffiffiffi
Q 0

L�2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58:6=24

p
� 1.56 relative to a fixed-effect MR-Egger model.
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et al.3 suggest reporting the statistic QR¼Q0=Q to aid the

interpretation of study results from an MR analysis. A QR

close to 1 indicates the IVW and MR-Egger models fit the

data equally well, whereas a QR much less than 1 indicates

MR-Egger is best-fitting. They also adapt the hierarchical

model-selection framework outlined by Rücker et al.12 for

guiding which approach is appropriate for a given analysis.

See Box 3 for further details. In essence, this framework

favours the use of the IVW model over MR-Egger regression

a priori because it yields causal estimates with higher preci-

sion, but recommends MR-Egger regression only when it

provides a demonstratively better fit to the data.

Aligning the SNP–exposure association estimates to be

positive is purely cosmetic for the IVW analysis, since the

IVW estimate remains constant whichever coding is used.

However, it is actually a necessary step for the standard im-

plementation of MR-Egger regression. This can be under-

stood by viewing MR-Egger as a method for detecting and

adjusting for any systematic trend in the causal estimates

according to the ‘weight’ each one receives in the IVW

analysis, with weight being a strictly positive quantity.

Limitations of the scatter plot for MR analysis

Although it has become the standard tool for visualizing

summary data in an MR analysis, the scatter plot has a ma-

jor limitation, which lies at the heart of this paper:

The scatter plot does not give the most transparent repre-

sentation as to the weight each genetic variant receives in

Box 3: The Rücker model-selection framework

The Rücker model-selection framework3,12 is encapsulated in the diagram below.

It shows the 2D decision space defined by Q, Q
0

and a significance threshold for detecting pleiotropy, d (e.g. d¼0.05).

The rationale for this framework is briefly summarized:

1. Start by performing an IVW analysis under a fixed-effect model and calculate Q.

2. If Q reveals sufficient heterogeneity at significance level d with respect to a v2
L�1 distribution, then switch instead to

a random-effects IVW model.

3. Fit fixed-effect MR-Egger regression and calculate Q
0
. If the difference Q �Q

0
is significant at level d with respect to

a v2
1 distribution, switch to this model.

4. If Q
0

reveals sufficient heterogeneity at significance level d with respect to a v2
L�2 distribution, then switch instead to

a random-effects MR-Egger model.

For a given data set, the slope joining the point ðQ;Q 0 Þ to the origin gives the ratio statistic QR and the point ðQ;Q 0 Þ im-

mediately defines the selected model under the above framework. This is illustrated by the black dot in the diagram

above. In this hypothetical case, the Rücker framework suggests the random-effects MR-Egger model is most appro-

priate.3 For the full data, random-effects MR-Egger regression is also suggested as the most appropriate method be-

cause Q¼ 67, Q �Q
0¼ 8.4 and Q

0 ¼ 58 are all large compared with their respective null distributions. QR is equal to 0.86.

If a genetic variant is deemed to be sufficiently outlying to warrant removal from the MR analysis (e.g. like SNP

rs17249754 in our example) the Rucker model selection framework must be repeated from the start.

International Journal of Epidemiology, 2018, Vol. 47, No. 4 1269



the MR analysis, whenever the weights are not solely de-

termined by the SNP–exposure associations.

This is the case even when the IVW estimate is calculated

using simple first-order weights, since they depend addi-

tionally on the SNP–outcome association standard error.

The fitted slope in Figure 1 displays this analysis. This lack

of transparency hampers the visual detection of outliers

and influential data points in the analysis, e.g. SNP

rs17249754 highlighted by a square symbol, which is illus-

trated further in Figure 2. In Figure 2 (top), we plot the

value of each individual variant’s contribution to

Cochran’s Q statistic, which is approximately Chi-squared

distributed with 1 df under the previously stated assump-

tions. For these data, Q¼ 67.09 (df¼ 25), indicating sub-

stantial heterogeneity, but the individual contribution of

SNP rs17249754 (the eighth variant in our data frame

highlighted by a square) is 28.34. It is therefore responsible

for the vast majority of excess heterogeneity amongst the

26 ratio estimates. Figure 2 (bottom left and right) shows

the Cook’s distance and Studentized residual measures for

each variant, which were first used by Corbin et al.13 to

look for influential SNPs in an MR context. Both measures

also confirm rs17249754 as the major outlier for these

data. However, this fact would not be immediately obvious

from a visual inspection of the scatter plot alone.

Methods

The Radial MR plot

The Galbraith Radial plot14,15 was proposed as a graphical

tool to visualize estimates of the same quantity with varying

precisions. Specifically, it plots the Z-statistics for each
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Figure 2. Top: Individual variant contributions to Cochran’s heterogeneity statistic. The contribution of SNP rs17249754 (labelled Q8) is shown as a

square. Bottom left: Cook’s distance for each genetic variant in the SBP–CHD data, with standard influence threshold (4/#SNPs) indicated by a dashed

line. Bottom right: Studentized residuals for each variant in the SBP–CHD data with standard 5% significance thresholds (solid black lines) and

Bonferroni-corrected significance thresholds (5%/#SNPs, dashed lines). SNP rs17249754 is again shown as a square.
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estimate (i.e. the point estimate divided by its standard er-

ror) on the vertical axis vs the inverse standard error on the

horizontal axis. In our notation, the inverse standard error

of the jth estimate is denoted by
ffiffiffiffiffi
wj
p

, where w stands for

‘weight’. It has been used extensively in meta-analysis to de-

tect heterogeneity and small-study bias.12,16,17 We believe

that, when translated to the MR setting, it offers a simple

solution to the inherent deficiencies of the standard scatter

plot. The horizontal axis of the Radial plot is the square

root of the actual weight each SNP receives in the IVW

analysis. Its vertical-axis scale represents the ratio estimate

for each SNP multiplied by the same square-root weight.

Since the square-root weight on the horizontal axis is natu-

rally positive, and the vertical axis is a function of this same

weight and the ratio estimate (which is coding invariant),

the Radial plot removes the need to manually reorient the

summary data estimates. Figure 3 (left) shows the blood-

pressure data, this time represented on the Radial MR plot.

The IVW estimate is again overlaid on top.

The Radial plot still enables the slope joining each data

point to the origin to be interpreted as a ratio estimate. A

second vertical axis is usually drawn on the right-hand side

of the Radial plot as an arc to accentuate this point. We

leave this out in this instance in order to focus attention on

the new scale of the horizontal and vertical axes only.

An additional helpful property of the Radial plot is that

the absolute vertical distance from each data point to the

fitted IVW slope is equal to the square root of its contribu-

tion to Cochran’s Q statistic. From the Radial plot, we can

instantly see that SNP rs17249754 is the most influential

variant in the IVW analysis, for two reasons:

i. it gets the most weight because of its position on the

horizontal axis;

ii. it has the largest contribution to Cochran’s Q statistic

because it is farthest away from the IVW slope.

The presence of a strong and (potentially) highly pleio-

tropic instrument is problematic because it calls into ques-

tion the validity of the InSIDE assumption. Although both

the IVW and MR-Egger regression models rely on this as-

sumption, MR-Egger is known to be more sensitive to its

violation.3

MR analysis via Radial regression

Although the standard meta-analysis formula can be used

to derive the IVW estimate (Box 1), in practice, it is often

convenient to obtain the estimate by fitting a linear-

regression model. This is a simple command in any soft-

ware package and allows the user to benefit from the host

of summary and diagnostic tools that compliment it. For

example, regressing the SNP–outcome associations on the

SNP–exposure associations with the intercept constrained

to 0 and weighting the regression by the SNP–outcome as-

sociation standard error will yield the IVW estimate using

first-order weights. More generally, we can interpret the

IVW estimate calculated using any set of user-defined

weights as a best-fitting line through the data points on the

Radial plot under the constraint that the line goes through

the origin. See Box 4 for further details.

Just as for the IVW estimate, MR-Egger regression can

also be implemented as a linear regression directly on the

Radial plot, but with the intercept left unconstrained. We
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Figure 3. Left: Radial MR plot of the blood-pressure data. IVW and Radial MR-Egger regression slopes calculated using first-order weights are over-

laid. The square-root contribution of SNP rs17249754 to Cochran’s Q statistic (
ffiffiffiffiffiffi
Q8

p
) is denoted by the vertical dashed line from the IVW slope. The

square-root contribution of a separate SNP to Rücker’s Q
0

statistic (
ffiffiffiffiffiffiffiffi
Q11

p
) is denoted by the vertical dashed line from the Radial MR-Egger slope.

Right: Generalized funnel plot of same data with first-order IVW and Radial MR-Egger regression slopes (and 95% confidence intervals) shown. SNP

rs17249754 is shown as a square.
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Box 4: Two-sample summary data MR via Radial plot regression

Radial IVW regression: The IVW estimate obtained using any set of weights wj can be interpreted as the b coefficient

estimated from the following IVW Radial regression model:

bbj
ffiffiffiffiffi
wj
p ¼ b

ffiffiffiffiffi
wj
p þ �j; �j � Nð0;1Þ:

Cochran’s Q statistic must then be calculated as

Q ¼
XL

j¼1

wjðbbj � bbIVWÞ2:

Radial MR-Egger regression: As a natural complement to the Radial IVW model above, the following Radial MR-Egger

regression model can instead be used to estimate the causal effect:

bbj
ffiffiffiffiffi
wj
p ¼ b0E þ b1E

ffiffiffiffiffi
wj
p þ �j:

That is, Radial MR-Egger is a regression directly on the Radial plot scale with the intercept parameter left uncon-

strained. Under a Radial model, the InSIDE assumption is that the pleiotropic effects are independent of the Radial

weights.

Rücker’s Q
0

statistic for the Radial MR-Egger model is defined as:

Q
0 ¼

XL

j¼1

Q
0

j ¼
XL

j¼1

wj
bbj �

bb0Effiffiffiffiffi
wj
p � bb1E

 !2

:

The two main advantages of Radial MR-Egger are (i) it avoids recoding of the genetic data and (ii) it can be interpreted

as the best-fitting line through the Radial plot data. This means that the Radial plot residuals are proportional to the

square root of their individual contribution to Rücker’s Q
0

statistic above. Fixed-effect and random-effects versions of

Radial IVW and Radial MR-Egger regression can be implemented by altering the definition of wj.

How does this differ from traditional MR-Egger? The originally proposed MR-Egger regression model, which implicitly

used first-order weights, is equivalent to the following Radial MR-Egger regression model:

bbj
ffiffiffiffiffi
wj
p ¼ b0E

rYj
þ b1E

ffiffiffiffiffi
wj
p þ �j;

where wj represents first-order weights. That is, b0E in the original model is not a true intercept (i.e. a constant); it is

the coefficient of the explanatory variable r�1
Yj , as explained in Ref.3 In practice, traditional and Radial MR-Egger will

yield qualitatively similar inferences, although the magnitude of their respective intercept parameters will be different.

For example, in Table 1, we see that the Radial MR-Egger slope of 0.007 is very similar to the MR-Egger slope of –

0.002, but the Radial MR-Egger intercept is 1.5 compared with the MR-Egger intercept of 0.033. Figure 5 shows the

Rücker model-selection framework applied to the IVW and Radial MR-Egger regression models.

Generalized Radial funnel plots A generalized Radial funnel plot that naturally complements the Radial plot can be pro-

duced by plotting
ffiffiffiffiffiffi
wj
p

on the vertical axis against bbj on the horizontal axis. This plot, however, is most informative for

the IVW analysis because the IVW slope lies at the (IVW) centre of the data. An equivalent Radial MR-Egger funnel plot

with the same property can be produced by plotting
ffiffiffiffiffiffi
wj
p

on the vertical axis against the ‘corrected’ ratio estimate

bbj �
bb0Effiffiffiffiffi

wj
p

on the horizontal axis. Figure 4 shows the Radial funnel plot for our data example.
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Figure 5. Leave-one-out sensitivity analysis of the data, showing the values of Q and Q
0
when each variant is left out of the analysis in turn. Points are

overlaid on the Rücker decision space that governs which of four model choices should be favoured. It assumes a significance threshold of d¼ 0.05 to

affect the model selection.

Figure 4. Radial MR-Egger funnel plot. Horizontal dashed lines link the position of data in the standard funnel plot (circles) to their implied position un-

der a Radial MR-Egger analysis (triangles).
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call this Radial MR-Egger regression. Radial MR-Egger re-

gression is different from traditional MR-Egger regression,

even when first-order weights are used, because the inter-

cept parameter is estimated on a different scale. Estimates

obtained from a Radial MR-Egger regression will be con-

sistent for the causal effect as long as the InSIDE assump-

tion is satisfied on this new scale (see Box 4).

Figure 3 (left) shows the Radial MR-Egger regression

slope, estimated assuming first-order weights. Just as for

the IVW method, the absolute distance from any data

point to the Radial MR-Egger slope is equal to the square

root of its contribution to the overall heterogeneity after

adjustment for pleiotropy—which is measured for MR-

Egger by Rücker’s Q0 statistic. This is illustrated in

Figure 3 for a single SNP. Note that the definition of

Rücker’s Q0 is also slightly modified under this analysis

(Box 4). The Radial plot can therefore be used to

simultaneously assess whether individual variants are out-

liers with respect to either the IVW or Radial MR-Egger re-

gression models.

Radial MR-Egger funnel plot

Figure 3 (right) shows the blood-pressure data represented

on the funnel plot. It plots the ratio estimate for each vari-

ant on the horizontal axis against its square-root precision

(or weight) on the vertical axis. In this instance, first-order

weights were used to scale the vertical axis and to calculate

the IVW and Radial MR-Egger regression slope estimates,

which are overlaid on top. Under first-order weighting,

Figure 3 (right) is equivalent to the funnel plot first used by

Bowden et al.11 to visualize MR analyses and to look for

asymmetry as a sign of pleiotropy. However, we label the

vertical axis generically to stress that a Radial funnel plot

Figure 6. Radial plots of the blood-pressure data produced using the RadialMR package. Top: Only the IVW estimate shown, Radial lines joining each

data point back to the origin. Bottom: Radial MR-Egger and IVW model fits shown.
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can be produced, and will naturally compliment its corre-

sponding Radial plot, when any given set of weights is

used.

Although it is possible to interpret the Radial plot simul-

taneously for IVW and Radial MR-Egger regression, the

funnel plot in Figure 3 (right) is predominately informative

about the IVW analysis. Specifically, the IVW estimate intui-

tively lies in the ‘centre of mass’ of the data when the mass

of each ratio estimate is equated with its weight. This is

explained in detail by Bowden and Jackson.18 In order to

produce a funnel plot with this same property for Radial

MR-Egger, we must apply a transform to the ratio estimate

of each data point in the funnel plot, by subtracting the

Radial MR-Egger intercept estimate divided by the ratio

estimates’ square-root weight18 (see Box 4). This is shown

by the horizontal dashed lines in Figure 4. Because it is in-

versely proportional to the square-root weight, the correc-

tion will be larger for imprecise ratio estimates and smaller

for precise estimates. The correction factor for the least pre-

cise (11th) ratio estimate, bb11, is explicitly labelled. We can

relate and cross-reference this to the corresponding Radial

plot in Figure 3 (left), where the 11th ratio estimate is also

labelled. It is not an outlier in the IVW analysis because of

its proximity to the IVW slope, but its distance from the

Radial MR-Egger slope is far greater.

Results

Table 1 shows the results of our re-analysis of the blood-

pressure data using IVW and MR-Egger regression, first

with all 26 SNPs and then with SNP rs17249754 removed.

For comparison, we show results for both the standard and

Radial implementations of MR-Egger regression. All anal-

yses were carried out using first-order weights and assum-

ing a multiplicative random-effects model if any residual

heterogeneity was detected.

The IVW estimate for the causal effect of a 1-mmHg in-

crease in SBP on the log-odds ratio of CHD is 0.053. Large

heterogeneity is present amongst the 26 ratio estimates, as

identified by Cochran’s Q, which is sufficiently extreme

(p¼ 1� 10–5) to opt for a random-effect IVW model in-

stead. Standard and Radial MR-Egger regression yield quali-

tatively similar results and suggest a causal effect close to 0.

Both models represent a better fit to the data at well below

the conventional 5% threshold, since, in each case, Q�Q0

is much larger than 3.84 (the 95th percentile of a Chi-

squared distribution on 1 df). Since a large amount of resid-

ual heterogeneity was still present around both the standard

and Radial MR-Egger fits (as detected by Q0), their standard

errors were also inflated to allow for over-dispersion.

When the three analysis methods are repeated this time

with variant rs17249754 removed, IVW and MR-Egger

causal estimates are virtually identical, especially with

those of Radial MR-Egger. Cochran’s Q and Rücker’s Q0

statistic only reveal a small amount of residual heterogene-

ity and examination of Q�Q0 reveals neither standard

nor Radial MR-Egger represents a better fit to the data

than the IVW model. Therefore, the data do not support a

move away from the standard IVW analysis without SNP

rs17249754.

Table 1. IVW and MR-Egger regression analyses of the SBP data with all SNPs and with SNP rs17249754 removed.

Multiplicative random-effects models were fitted in all cases whenever over-dispersion was detected

Model/parameter Est. S.E. t-value p-value Heterogeneity statistic

Complete data

IVW

bIV W 0.0531 0.0104 5.08 3.01�10– 5 Q¼67.09 (p¼1�10–5)

MR-Egger

b0E 0.033 0.018 1.86 0.075 –

b1E –0.002 0.031 –0.078 0.939 Q
0 ¼58.60 (p¼1�10–4)

Radial MR-Egger

b0E 1.495 0.967 1.54 0.136 –

b1E 0.007 0.0315 0.225 0.824 Q
0 ¼61.05 (p¼4.5�10–5)

SNP rs17249754 removed

IVW

bIV W 0.066 0.008 8.08 2.63�10– 8 Q¼35.00 (p¼0.068)

MR-Egger

b0E 0.010 0.015 0.670 0.509 –

b1E 0.049 0.027 1.760 0.092 Q
0 ¼34.33 (p¼0.061)

Radial MR-Egger

b0E 0.059 0.826 0.071 0.944 –

b1E 0.064 0.028 2.294 0.031 Q
0 ¼34.99 (p¼0.052)
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A leave-one-out sensitivity analysis

Rather than using the Rücker framework for formal

model-selection purposes (Box 3), we instead demonstrate

its utility in providing a useful, but informal, backdrop to

assess the influence of each individual variant on the analy-

sis under the IVW and MR-Egger frameworks. Figure 5

shows the values of Cochran’s Q (calculated with respect

to the IVW fit) against Rücker’s Q0 (calculated with respect

to the Radial MR-Egger fit) for 26 analyses where each

SNP is left out in turn. These points are overlaid on top of

the Rücker decision space assuming a threshold of d¼ 0.05

for declaring heterogeneity using Q and Q0. In the main

analysis reported in Table 1, random-effects models were

fitted if any heterogeneity at all was detected, which is

equivalent to setting d¼ 0.5. The nested nature of the

Radial IVW and MR-Egger models guarantees that all

points in Figure 5 lie below the diagonal line Q¼Q0.

When all the data are analysed together (triangular

point in Figure 5), sufficient heterogeneity and bias are

detected to mean that a random-effects Radial MR-Egger

regression model is best supported by the data. It infers the

presence of large directional pleiotropy and no causal effect

between SBP and CHD risk. This is not materially changed

when every variant except SNP rs17249754 is left out of the

analysis in turn (circular points in Figure 5). However,

when SNP rs17249754 is removed from the data (square

point in Figure 5), there is no evidence of heterogeneity or

bias due to directional pleiotropy and the data provide no

reason to move away from a standard IVW analysis.

The Radial plot function

We have written an R package RadialMR to produce

Radial plots and to perform Radial regression. Two of the

many possible plot options are illustrated for the blood-

pressure data in Figure 6. Figure 6 (top) shows the Radial

plot of the IVW analysis alone, which includes a Radial

curve to highlight the ratio estimate for each genetic vari-

ant, as well as the overall IVW estimate. Data points with

large contributions to Cochran’s Q statistic are shown in

orange. The significance level for identifying these outliers

can be set by the user; here we chose the value 0.01.

Figure 6 (bottom) shows the Radial plot on a tighter scale,

with both IVW and Radial MR-Egger regression imple-

mented. Outliers for either method (and both methods) are

shown. A table of the exact Q and Q0 contributions for

each variant is given as an output for the researcher to con-

duct a more detailed analysis.

Radial plots are produced by many existing R packages

such as metafor, numOSL and Luminescence. Care will

need to be taken, however, to input data from an MR

analysis appropriately into these generic platforms. For

this reason, we will also continue to develop our own

RadialMR package to keep pace with the latest develop-

ments in the field of MR. It is currently available to down-

load at https://github.com/WSpiller/RadialMR/.

Conclusion

It has long been appreciated in the general meta-analysis

context that the Radial plot has many desirable character-

istics over the traditional scatter plot, especially in the de-

tection of outlying studies and small-study bias. Given its

intimate connection with meta-analysis, we propose that

the Radial plot should also be given a more central role in

two-sample summary data MR studies.

The Radial plot, and its corresponding funnel plots, im-

prove the visual interpretation of data used within an MR

analysis because it provides the most transparent representa-

tion from an information-content perspective. Its implica-

tions stem beyond the purely aesthetic for MR-Egger

regression, however. Radial MR-Egger is an attractive mod-

ification and generalization of the original approach that

naturally flows from the use of this plot. On top of remov-

ing the need to recode the genetic data and facilitating a

more straightforward detection of outliers, the Radial for-

mulation also makes it much more transparent that it is

attempting to detect any systematic trend in ratio estimates

according to the weight they receive in the analysis. Another

advantage is that it only requires the ratio estimates and

their standard errors. This makes it applicable even when

data on individual SNP–exposure and SNP–outcome associ-

ations (and their standard errors) are not available.

When first-order weights are used, Radial MR-Egger

and traditional MR-Egger will generally yield similar

causal estimates, but the magnitude of the intercept will be

different. An undoubted strength of the Radial approach

lies in the fact that it can be seamlessly applied when any

set of weights is used. In recent work, Bowden et al.4 have

shown that first-order weights can inflate the type I error

rate of Cochran’s Q statistics for detecting heterogeneity,

whenever the SNPs utilized are weak instruments or there

is a large causal effect. Conversely, second-order weights

can dramatically reduce the power of detecting heterogene-

ity when it is truly present. They propose iterative and exact

weights that depend on the causal estimate to improve the

performance of the IVW estimate and Cochran’s Q

statistic. These weights (and indeed any weights) can be

immediately incorporated into a Radial plot and the IVW

approach. In future work, we will extend this approach for

Radial MR-Egger also. Further investigation into the prop-

erties of Radial MR-Egger in a variety of circumstances is

required, but the features that distinguish it from the
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standard approach appear attractive, and it has the poten-

tial to become the standard implementation.

When conducting a two-sample summary data MR

analysis with a binary outcome, natural correlations will

exist between causal-effect estimates (e.g. log-odds ratios)

and their precisions, which could easily contribute to het-

erogeneity and hence be misconstrued as pleiotropy. In re-

lated work on the meta regression of separate trial results

measuring a binary outcome, Harbord et al.19 show that

regressing the ratio of the score and square-root informa-

tion statistics against the square-root information (in a

close analogy to the Radial plot) is better at mitigating this

effect than simply working directly with the log-odds ratio

and its standard error. As further work, we plan to extend

the approach of Harbord to the MR context for Radial MR-

Egger regression with binary outcomes. Similar approaches

based on score and information statistics may also prove

useful for MR analyses of time-to-event outcomes.

We illustrated a leave-one-out analysis using the Rücker

model-selection framework as a backdrop when conduct-

ing an MR study, to understand how model choice is af-

fected by the exclusion of individual variants. However,

we stress some caution in following this approach to the

extreme using a purely statistical criterion, e.g. in adopting

a strategy of removing all outliers until little or no hetero-

geneity remains. Procedures such as this have been proposed

when meta-analysing separate study results,20 but have been

criticized for being too data-driven, likely to throw out

larger studies than smaller studies and offering little expla-

nation as to the underlying cause of heterogeneity.21 A

much stronger criterion for exclusion of a particular SNP

would be to first detect it as a statistical outlier and then

confirm the SNP’s association with a separate phenotype

that represents a pleiotropic pathway to the outcome.

The Rücker model-selection framework we present

explores how the choice of IVW or MR-Egger model is af-

fected by the summary data from each SNP, but it cannot

tell the user about the probability that each model is true.

Thompson et al.22 have proposed a formal Bayesian model

averaging framework that achieves this aim and produces

posterior causal-effect estimates accounting for model un-

certainty. Hemani et al.23 have also recently proposed a ma-

chine learning framework for choosing between a much

larger group of modelling choices. Both ideas nicely compli-

ment and extend the basic approach outlined here.
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